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Optimal capacity of the Blume-Emery-Griffiths perceptron
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A Blume-Emery-Griffiths perceptron model is introduced and its optimal capacity is calculated within the
replica-symmetric Gardner approach, as a function of the pattern activity and the embedding stability param-
eter. The stability of the replica-symmetric approximation is studied via the analog of the de Almeida–Thouless
line. A comparison is made with other three-state perceptrons.
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I. INTRODUCTION

Recently an optimal Hamiltonian for a multistate netwo
has been put forward@1,2# on the basis of information theor
by maximizing the mutual information content of the syste
For a two-state network, this Hamiltonian equals the we
known Hopfield Hamiltonian extensively studied in the l
erature@3,4#. For a three-state network, one finds a Blum
Emery-Griffiths ~BEG! spin-glass-type Hamiltonian@1,2,5#.
As spin glasses, these models have been studied for s
time now. Thermodynamic as well as dynamic properties
discussed in the literature for disorder in both the quadr
and biquadratic interaction. Many references can be foun
Ref. @6#. As a neural network model its study has be
started only recently@2,10#. But it turns out already that both
the maximal capacity and the basin of attraction of this n
work are enlarged, at least for Hebb rule learning, in co
parison with the standard three-state networks such as,
the Q-Ising spin-glass models.

A natural question is then whether these improved
trieval quality aspects are restricted to the use of the H
rule. In the same context, a further question is then whe
we can extract a perceptron-type model with an optimal p
formance out of this BEG recurrent network, as is done
the Hopfield neural network@3,4#. The perceptron is by now
a well-known and standard model in theoretical studies
practical applications in connection with learning and gen
alization @3,4,7–9#. Consequently, a number of extensio
including the many-state graded response and colored
ceptrons have been formulated in the literature@11–18#.

The aim of this work is precisely to introduce such
BEG-perceptron model and, in particular, to study its Ga
ner optimal capacity. Although the method for doing that
standard and well know by now@19,20# its generalization to
the problem at hand is highly nontrivial. Nevertheless
have succeeded in obtaining a closed expression for
replica-symmetric approximation to the Gardner optimal
pacity.
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The paper is organized as follows. In Sec. II we recall
BEG Hamiltonian and define the BEG perceptron mod
Section III presents a closed analytic formula for the repli
symmetric Gardner capacity of this model and studies
behavior as a function of the embedding constant and
activity. Comparisons with other three-state perceptrons
made. In Sec. IV the stability of the replica-symetric soluti
is studied using an extension of the de Almeida-Thoul
analysis. The analytic form of the two replicon eigenvalues
obtained. Stability is found to be broken for smaller values
the activity and for very small embedding stabilities. Secti
V presents some concluding remarks. In the appendixes,
ther technical explanations are given.

II. THE BEG PERCEPTRON

Consider a neural network consisting ofN neurons which
can take valuess i ,i 51, . . . ,N from the discrete setS[
$21,0,11%. The p patterns to be stored in this network a
supposed to be a collection of independent and identic
distributed random variables,j i

m , m51, . . . ,p with a prob-
ability distribution

p~j i
m!5

a

2
d~j i

m21!1
a

2
d~j i

m11!1~12a!d~j i
m!, ~1!

with a the activity of the patterns so that

lim
N→`

1

N (
i

~j i
m!25a. ~2!

Given the network configuration at timet, sN[$s j (t)%, j
51, . . . ,N, the following dynamics is considered. The co
figurationsN(0) is chosen as input. The neurons are upda
according to the stochastic parallel spin-flip dynamics
fined by the transition probabilities

Prob„s i~ t11!5s8PSusN~ t !…5
exp@2be i$s8usN~ t !%#

(
sPS

exp@2be i$susN~ t !%#

.

~3!

Here the energy potentiale i@susN(t)# is defined by
©2003 The American Physical Society13-1
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e i@susN~ t !#52shi„sN~ t !…2s2u i„sN~ t !…, ~4!

where the following local fields in neuroni carry all the
information

hN,i~ t !5(
j Þ i

Ji j s j~ t !, uN,i~ t !5(
j Þ i

Ki j s j
2~ t !, ~5!

with the obvious shorthand notation for the local fields. F
synaptic couplingsJi j andKi j of the Hebb type,

Ji j 5
1

a2N
(
m51

p

j i
mj j

m , ~6!

Ki j 5
1

a2~12a!2N
(
m51

p

@~j i
m!22a#@~j j

m!22a#, ~7!

the corresponding neural network Hamiltonian

H52
1

2 (
iÞ j

Ji j s is j2
1

2 (
iÞ j

Ki j s i
2s j

2 ~8!

has been discussed recently@2#. It has been found that th
capacity and basin of attraction has been enlarged in c
parison with other three-state networks.

We would like to understand whether this better retrie
quality is a general property of the model. Therefore,
want to answer the following question: given the set op
patterns specified above, is there a network of
perceptron-type architecture which has these patterns
fixed points of the deterministic form of the dynamics co
sidered above? At zero temperature the updating rule of
dynamics~3!, and~4! is equivalent to the gain function

s i~ t11!5sgn@hN,i~ t !#Q„uhN,i~ t !u1uN,i~ t !…

[g„hN,i~ t !,uN,i~ t !…, ~9!

with Q being the Heaviside function. Considering the p
ceptron architecture (N inputs with couplingsJj andK j and
1 output! we say that a given pattern$j0

m ,j i
m ,i 51, . . . ,N%,

with j0
m denoting the output, is stored if the following rela

tion is valid:

j0
m5g~hm,um! ~10!

with

hm5
1

AN
(
j 51

N

Jjj j
m , um5

1

AN
(
j 51

N

K j~j j
m!2, ~11!

and$J,K%[$Jj ,K j% denoting the configurations in the spa
of interactions. The factorN21/2 is introduced to have the
weightsJj andK j of order unity.

The aim is then to determine the maximal number of p
terns,p, that can be stored in the perceptron, in other wo
to find the maximal value of the loadinga5p/N for which
couplings satisfying Eqs.~10! and ~11! can still be found.
03611
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Following a Gardner-type analysis@19# the fundamental
quantity that we want to calculate is then the volume fract
of weight space given by

V5E dJdKr~J,K ! )
m51

p

xj
0
m~hm,um;k! ~12!

with the characteristic function

xj
0
m~hm,um;k!5dj

0
m ,g(hm,um)

5~j0
m!2Q~ uhmu1um2k!Q~j0

mhm2k!

1@12~j0
m!2#Q~2uhmu2um2k!, ~13!

wherek is the embedding stability parameter measuring
size of the basin of attraction for themth pattern andr(J,K )
is the following normalization factor assuming spherical co
straints for the couplings:

r~J,K !5
d~J•J2N!d~K•K2N!

E
2`

`

dJdKd~J•J2N!d~K•K2N!

. ~14!

In order to perform the average over the disorder in the in
patterns and the corresponding output, we employ the rep
technique to evaluate the entropy per site,

v5 lim
N→`

1

N
^̂ ln V&&, ~15!

where^̂ •••&& denotes an average over the statistics of inp
$j j

m% and outputs$j0
m%, recalling Eq.~1!.

III. REPLICA-SYMMETRIC ANALYSIS

In the replica approach the entropy per sitev is computed
via the expression

v5 lim
N→`

lim
n→0

1

nN
~ ^̂ Vn&&21!5 lim

N→`

lim
n→0

1

nN
ln^̂ Vn&&,

~16!

whereVn is then times replicated fractional volume

^̂ Vn&& }E F )
a51

n

dJadKad~Ja
•Ja2N!d~Ka

•Ka2N!G
3KK )

a51

n

)
m51

p

xj
0
m~hm

a ,um
a ;k!LL , ~17!

whereby we can forget, since the couplings are continuo
about constant terms such as the denominator in Eq.~14!.
The calculation then proceeds in a standard way although
technical details are much more complicated. For a sh
account, we refer to Appendix A. Here we restrict ourselv
to the following important remarks. The main order para
eters appearing in the calculation are
3-2
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qab5
1

N
Ja
•Jb, r ab5

1

N
Ka

•Kb, a,b,

La5
1

AN
(
j 51

N

K j
a ; a. ~18!

Of course, in the replica-symmetric~RS! approximation we
are focussing upon here,qab5q,r ab5r ,La5L. The first
two order parameters are the overlaps between two dis
replicas for the couplingsJ andK , the third one arises from
the fact that the dynamics~9! and, hence, also the characte
istic function~13!, contains a second fieldu, quadratic in the
patterns. We remark that it describes the relative importa
of the active versus the nonactive neurons. Actually, in
calculationaL will be the important quantity witha the sec-
ond moment of the pattern distribution, i.e., the pattern
tivity.

The RS optimal Gardner capacity is obtained when
overlap order parametersq andr go to 1. It is clear that these
limits have to be taken simultaneously but, in general, th
rate of convergence could be different. Therefore, we in
duce (12r )5g(12q), whereg is a new parameter which
one also needs to extremize. We expect this parameterg to
depend on the pattern distribution through the activitya.

Pursuing this approach then leads to

aRS~a,k!52extr
L,g

lim
q→1

111/g
2~12q!g1

RS~q,g,L !
, ~19!

where ‘‘extr’’ means extremum andg1
RS(q,g,L) reads

g1
RS~q,g,L !5E D~h0!D~Agu02 l !

3KK lnE
Vj

dh

A2p~12q!

du

A2p~12q!

3expF2
~h2h0!21~u2u0!2

2~12q! G LL
j0

,

~20!

with l[aL/Aa(12a), where

D~ax1b!5~2p!21/2adxexp@~21/2!~ax1b!2#

and where the integration regionVj is determined by the
Heaviside functions appearing in the characteristic funct
xj„Aah,Aga(12a)u;k… defined in Eq.~13!. The expression
~20! for the functiong1

RS suggests that an asymptotic expa
sion to compute the limitq→1 is possible. Indeed, afte
some tedious algebra~see Appendix B! we find for this limit
03611
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g1
RS~q,g,L !52

a

2~12q! (
i 51

3 E
Ri

D~h01k/Aa!

3D~Agu02 l !dmin
Ri ~h0 ,u0!2

~12a!

2~12q!

3(
i 51

3 E
Ri8

D~h0!D~Agu02u!dmin
Ri8 ~h0 ,u0!

1o~1/@12q# ! ~21!

with u[(aL1k)/Aa(12a). The integration regions read

R15H h0,0

u0.0,
~22!

R25H h0g8,u0,0

h0,0,
~23!

R35H u0,0

u0 /g8,h0,2u0g8, ~24!

R185H h0.0

2h0 /g8,u0,g8h0 ,
~25!

R285H 2u0 /g8,h0,u0 /g8

u0.0,
~26!

R385H h0,0

h0 /g8,u0,2g8h0 ,
~27!

and the corresponding integrands are given by

dmin
R1 5h0

2 , ~28!

dmin
R2 5h0

21u0
2 , ~29!

dmin
R3 5

1

11~g8!2
~h01g8u0!2, ~30!

d
min

R18 5
1

11~g8!2
~h01g8u0!2, ~31!

d
min

R28 5h0
21u0

2 , ~32!

d
min

R38 5
1

11~g8!2
~h02g8u0!2, ~33!

with g8[Ag(12a) and where we remark that thedmin are
minimal distances between a point in the different integrat
regionsRi ,Ri8 ,i 51,2,3 and the border ofVj ~see Appendix
B!. This may allow for a possible geometrical interpretati
3-3
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of the Gardner optimal capacity in the space of local fiel
as has been suggested for theQ-state clock model in Ref
@21#.

After inserting Eqs.~21!–~33! in Eq. ~19! and extremizing
numerically with respect toL and g, we find the results
presented in Figs. 1 and 2. In Fig. 1 the capacityaRS versus
the activitya is shown for several values of the embeddi
stability constantk. For biggerk, the capacity becomes, o
course, smaller. Fora51, i.e., binary patterns, we find bac
the original Gardner results, as we do in Fig. 2 showingaRS
as a function ofk for several values ofa. Smaller activity
indicating a growing presence of zero-state neurons lead
bigger capacities. Of course, this does not meana priori that
also the information content of the system is increased.
completeness, we remark that the parametersl
5aL/Aa(12a) andg that we have extremized over, depe
rather strongly but smoothly on the pattern activity. Fora
51 we find back the two-state perceptron value forL, i.e.,
L50 (l 5`), and g5`. Finally, in order to have an ide
about the information stored in the network, we plot in Fig
the information content per neuron,

I ~a!52
aRS

ln 3 Fa lnS a

2D1~12a!ln~12a!G . ~34!

FIG. 1. The optimal capacityaRS as a function of the pattern
activity a for several values of the stability constantk. The dots at
a51 refer to the optimal capacity of the two-state perceptron.

FIG. 2. The optimal capacityaRS as a function of the stabilityk
for several values of the pattern activitya. The straight-dotted line
corresponds to the optimal capacity of the two-state perceptron
03611
,
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For a51 our result is again consistent with the simple p
ceptron result@19#.

Comparing the optimal capacity of the BEG perceptr
for k50 and a uniform pattern, which is found to be 2.2
~see Fig. 1!, with other three-state neuron perceptron mode
we recall that fork50 and uniform patterns, theQ53 Ising
perceptron can maximally reach an optimal capacity equa
1.5, depending on the separation between the plateaus o
gain function~see Refs.@14,15#! for the precise details!, and
the Q53 clock and Potts model both reach an optimal c
pacity of 2.40@12,21#. Here we have to recall that theQ
53 Ising perceptron and the BEG perceptron have the s
topology structure in the neurons, whereas theQ53 clock
and Potts models have different topologies.

IV. STABILITY OF THE REPLICA-SYMMETRIC
SOLUTION

From the work of Gardner@19# we know that for the
binary neuron perceptron, the RS solution is margina
stable against RS breaking~RSB! fluctuations. From the
work on multistateQ-Ising neurons@24# we know that the
RS solution may be stable or unstable depending on the
parameter, the number of spin states, and the distributio
the patterns. Furthermore, in general, increasing the em
ding stability parameterk lowers the capacity and enhanc
the stability against RSB. Using these results for theQ53
spin states as a guide we also expect breaking for the B
perceptron model at hand. To confirm this and find out
precise interval ofa values where breaking occurs, we ge
eralize the de Almeida–Thouless analysis@22,23#.

First, the Hessian matrix associated with the functionF,
Eq. ~A8!, is computed, and then the eigenvalues are de
mined. As usual, two types of eigenvalues are found: lon
tudinal eigenvalues describing fluctuations within RS a
transverse eigenvalues describing stability against RSB.
find four transversal eigenvalues each with degener
1
2 n(n23). In the limit q→1 they can be calculated explic
itly in terms of the minimal distances occuring in Eqs.~28!–
~33!. The result reads~for more details we refer to Appendi
C!

l15 1
2 ~Dq1D r !1 1

2 A~Dq2D r !
214Dc

2, ~35!

FIG. 3. The information content per neuron,I, as a function ofa
for k50, 0.2, 0.4, 0.6, 0.8~from top to bottom!.
3-4
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l25 1
2 ~Dq1D r !2 1

2 A~Dq2D r !
214Dc

2, ~36!

t15
1

2~Dc
22DqD r !

$Dq1D r1~D q̂1D r̂ !~Dc
22DqD r !

1A4Dc
21@Dq2D r1~D q̂2D r̂ !~DqD r2Dc

2!#2%,

~37!

t25
1

2~Dc
22DqD r !

$Dq1D r1~D q̂1D r̂ !~Dc
22DqD r !

2A4Dc
21@Dq2D r1~D q̂2D r̂ !~DqD r2Dc

2!#2%,

~38!

with the D ’s given by

Dq5
aaRS

~12q!2 (
i 51

3 E
Ri

D~h01k/Aa,Agu02t !

3H 1

2

]2

]h0
2

dmin
Ri ~h0 ,u0!J 2

1
~12a!aRS

~12q!2 (
i 51

3 E
Ri8

D~h0 ,Agu02u!

3H 1

2

]2

]h0
2

d
min

Ri8 ~h0 ,u0!J 2

1o~1/@12q# !, ~39!

D r5
aaRS

g2~12q!2 (
i 51

3 E
Ri

D~h01k/Aa,Agu02t !

3H 1

2

]2

]u0
2

dmin
Ri ~h0 ,u0!J 2

1
~12a!aRS

g2~12q!2 (
i 51

3 E
Ri8

D~h0 ,Agu02u!

3H 1

2

]2

]u0
2

d
min

Ri8 ~h0 ,u0!J 2

1o~1/@12q# !, ~40!

Dc5
aaRS

g~12q!2 (
i 51

3 E
Ri

D~h01k/Aa,Agu02t !

3H 1

2

]2

]h0]u0
dmin

Ri ~h0 ,u0!J 2

1
~12a!aRS

g~12q!2 (
i 51

3 E
Ri8

D~h0 ,Agu02u!

3H 1

2

]2

]h0]u0
d

min

Ri8 ~h0 ,u0!J 2

1o~1/@12q# !, ~41!

D q̂5~12q!2, ~42!
03611
D r̂5~12r !25g2~12q!2. ~43!

Thentwo replicon eigenvalueslR1
andlR2

can be defined as

lR1
5l1t2 , lR2

5l2t1 . ~44!

Stability of the RS solution requires that bothlR1
,lR2

,0. In
Figs. 4–6 we present the numerical results concerning
stability analysis. In Fig. 4 the first replicon eigenvaluelR1

is shown as a function ofa for several values ofk. It is seen
that for small values ofk this eigenvalue becomes positiv
for smaller values ofa and hence replica symmetry is bro
ken. We remark that fora51 our results are consistent wit
those of Gardner@19#. Figure 5 presents a closer view of th
for k50. For 0,a<0.48(8) the RS solution is unstable
Storing only zero-state spins,a50, or binary spinsa51
leads to marginal stability. As a first explanation one cou
remark that for increasinga, allowing more6 states, the
disorder is increased up to about a uniform distribution
patterns,a52/3. It is clear that for biggerk, the stability
against RSB increases. In fact fork.0.0061 already no
more breaking occurs. Finally, Fig. 6 shows thatlR2

is al-
ways negative and, hence, plays no role in the breaking
the RS stability.

FIG. 4. The first replicon eigenvaluelR1
as a function ofa for

several values ofk. The dots ata51 refer to the optimal capacity
of the two-state perceptron.

FIG. 5. The first replicon eigenvaluelR1
as a function ofa for

k50 on a different scale. RSB occurs for smaller values ofa.
3-5
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V. CONCLUDING REMARKS

In this work we have introduced a perceptron mod
based upon the recently studied Blume-Emery-Griffiths n
ral network, containing ternary neurons. We have obtai
an analytic formula for the replica-symmetric optimal Gar
ner capacity. For the embedding stability constant equa
zero and uniform patterns, e.g., we find a bigger optim
capacity,aRS52.24, than that for theQ53 Ising perceptron,
aRS51.5, which has the same topology structure for the n
rons. Since, in general, perceptrons turn out to be very us
models in connection with learning and generalization, thi
an interesting observation. It is also consistent with ear
results derived for the Hebb rule.

We have studied the stability of the replica-symmetric
lution by generalizing the de Almeida–Thouless analysis
deriving an analytic expression for thetwo replicon eigen-
values that play a role in the Gardner limit. Breaking on

FIG. 6. The second replicon eigenvaluelR2
as a function ofa

for several values ofk.
03611
l
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occurs for small activities and very small embedding co
stants,k,0.0061. This is consistent with the stability resu
found for theQ53 Ising perceptrons.

These results strenghten the idea that the better retri
properties found for the Blume-Emery-Griffiths model
comparison with theQ53 Ising model are not restricted t
the specific Hebb rule.
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APPENDIX A: REPLICA ANALYSIS
AND REPLICA-SYMMETRIC ANSATZ

In this appendix we outline the main steps in the calcu
tion of the n times replicated volume~17! extending Ref.
@19# to the case at hand. In order to perform the quenc
average we use thed-function representation

15E
2`

` dhm
adĥm

a

2p
expF i ĥm

aS hm
a2

1

AN
(
j 51

N

Jj
ajj

mD G ,

~A1!

15E
2`

` dum
adûm

a

2p
expF i ûm

aS um
a2

1

AN
(
j 51

N

K j
a~jj

m!2D G
~A2!

to take the local fields out of the characteristic function a
obtain
KK )
a51

n

)
m51

p

xj
0
m~hm

a ,um
a ;k!LL 5E F )

a51

n

)
m51

p dum
adûm

a

2p

dhm
adĥm

a

2p GexpF i (
a51

n

(
m51

p

~ ĥm
ahm

a1 ûm
aum

a !G
3KK )

a51

n

)
m51

p

expF2
i ĥm

a

AN
(
j 51

N

Jj
aj j

m2
i ûm

a

AN
(
j 51

N

K j
a~j j

m!2G LL
j

i
m

3KK )
a51

n

)
m51

p

xj
0
m~hm

a ,um
a ;k!LL

j
o
m

. ~A3!

Introducing the order parameters~18! and their conjugate variables, and using the identities

15E
2`

`

)
a,b

dqabdq̂ab

2p i /N
exp@ q̂ab~Nqab2Ja

•Jb!#, ~A4!

15E
2`

`

)
a,b

drabdr̂ab

2p i /N
exp@ r̂ ab~Nrab2Ka

•Kb!#, ~A5!
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15E
2`

`

)
a51

n
dLadL̂a

2p/AN
expF i L̂ aS ANLa2(

j 51

N

K j
aD G

~A6!

allows us to express the replicated fractional volume as
integral over them, viz.,

^̂ Vn&&}E
2`

` F )
a51

n
dLadL̂a

2p/AN
GF )

a51

n
dÊa

4p i

dF̂a

4p i G
3F )

a,b

dqabdq̂ab

2p i /N

drabdr̂ab

2p i /N Gexp@NF#, ~A7!

with F given by

F5aG1~qab ,r ab ,La!1G2~Q̂ab ,R̂ab ,L̂a!

1G3~qab ,r ab ,Q̂ab ,R̂ab!, ~A8!

where

G15 lnE
2`

` F )
a51

n
duadûa

2p

dhadĥa

2p GexpF i (
a51

n

~ ĥaha

1 ûaua!2 ia (
a51

n

ûaLa2
a

2 (
a,b51

n

ĥaĥbqab

2
a~12a!

2 (
a,b51

n

ûaûbr abG
3KK )

a51

n

xj~ha,ua;k!LL
jo

, ~A9!

G25 lnE
2`

` F )
a51

n

dJadKaGexpF2
1

2 (
a,b51

n

~Q̂abJaJb

1R̂abKaKb!2 i (
a51

n

L̂aKaG , ~A10!

G35
1

2 (
a,b51

n

~Q̂abQab1R̂abRab!, ~A11!

and

Q̂ab5Êadab1q̂ab~12dab!, ~A12!

R̂ab5F̂adab1 r̂ ab~12dab!, ~A13!

Qab5dab1qab~12dab!, ~A14!

Rab5dab1r ab~12dab!. ~A15!

We remark that thed-function representation of the loca
fields has allowed us to perform the calculations until t
03611
n

s

point without using an explicit form for the characterist
function xj(h

a,ua;k). Using the RS ansatzF can be sim-
plified further and the saddle-point equations forQ̂,Q,R̂,R
become algebraic so that they can be solved explicitly, le
ing to the result~19!, ~20!.

APPENDIX B: q\1 LIMIT

In order to compute the asymptotic expansion of Eq.~20!
we proceed as follows. We split the integral over (h0 ,u0)
into two parts, i.e.,Vj determined by the Heaviside functio
in xj , and its complementC(Vj). The first integral gives
zero contribution in the limitq→1, while the second one
gives a contribution of order (12q)21. Indeed, the integra-
tion over (h,u) parametrized byq is nothing but an expo-
nential Dirac-delta representation. Whenever the peak of
d representation lies in the regionVj , which means that
(h0 ,u0)PVj , the integral results in a finite contribution
The contributions of order (12q)21 arise from the points
(h0 ,u0)PC(Vj). Therefore, we can write

g1
RS~q,g,L !5KK EC(Vj)

D~h0!D~Agu02 l !ln@1#j~h0 ,u0!LL
j

,

~B1!

where we have introduced the shorthand notation

@1#j~h0 ,u0!5E
Vj

dh

A2p~12q!

du

A2p~12q!

3expF2
~h2h0!21~u2u0!2

2~12q! G . ~B2!

Next, for a given (h0 ,u0)PC(Vj) the main contribution
arising from the function@1#j(h0 ,u0) is obtained for those
points (h,u)PVj that minimize the distance (h2h0)21(u
2u0)2. To calculate this minimal distance, we split u
C(Vj) into three subregions according to Fig. 7 in the case
j51:

R15H h0,
k

Aa

u0.0,

~B3!

R255 S h02
k

Aa
DAg~12a!,u0,0

h0,
k

Aa
,

~B4!
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R35H u0,0

u0

Ag~12a!
1

k

Aa
,h0,

k

Aa
2u0Ag~12a!.

~B5!

Computing the minimal distances for such subregions
straightforward and leads to

dmin
R1 5S k

Aa
2h0D 2

, ~B6!

FIG. 7. Schematic representation of the subregions and min
distances forC(Vj51).
03611
is

dmin
R2 5S k

Aa
2h0D 2

1u0
2 , ~B7!

dmin
R3 5

1

11g~12a! S k

Aa
2u0Ag~12a!2h0D 2

. ~B8!

By redefining h02k/Aa→h0 and g85Ag(12a) we re-
cover the expressions~28!–~30!.

We proceed analogously for the regionC(Vj50). We split
this region into three subregions as shown in Fig. 8

al FIG. 8. As Fig. 7 forC(Vj50).
R185H h0.0

2
1

Ag~12a!
S h01

k

Aa
D ,u0,Ag~12a!h02

k

Aga~12a!
,

~B9!

R2855 2
1

Ag~12a!
S u01

k

Aga~12a!
D ,h0,

1

Ag~12a!
S u01

k

Aga~12a!
D

2
k

Aga~12a!
,u0,`,

~B10!

R185H h0,0

2
1

Ag~12a!
S 2h01

k

Aa
D ,u0,2Ag~12a!h02

k

Aga~12a!
.

~B11!
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The minimal distances are given by

d
min

R18 5
@Aga~12a!u01k1Aah0#2

a@11g~12a!#
, ~B12!

d
min

R28 5h0
21S k

Aga~12a!
1u0D 2

, ~B13!

d
min

R38 5
@Aga~12a!u01k2Aah0#2

a@11g~12a!#
, ~B14!

and redefiningk/Aga(12a)1u0→u0, we find Eqs.~31!–
~33!.

APPENDIX C: RS STABILITY

Starting from the stability matrix formed by the seco
derivatives ofF @recall Eq.~A8!# with respect to the orde
parameters and the conjugated variables, we find that
transverse fluctuations are relevant.

These transverse fluctuations are characterized by fou
genvalues with degeneracyn(n23)/2, given by the roots of
the fourth-degree characteristic polynomialP(l),

P~l!5UDq2l Dc 1 0

Dc D r2l 0 1

1 0 D q̂2l 0

0 1 0 D r̂2l

U
5@~Dq2l!~D q̂2l!21#@~D r2l!~D r̂2l!21#

2Dc
2~D q̂2l!~D r̂2l!, ~C1!

with the coefficientsD given by

Dq5
a

q2E D~h0!D~Agu02t !

3KK H ]2

]h0
2

ln@1#j~h0 ,u0!J 2LL
jo

, ~C2!

D r5
a

r 2E D~h0!D~Agu02t !

3KK H 1

g

]2

]u0
2

ln@1#j~h0 ,u0!J 2LL
jo

, ~C3!
03611
ly

ei-

Dc5
a

qrE D~h0!D~Agu02t !

3KK H 1

Ag

]2

]h0]u0
ln@1#j~h0 ,u0!J 2LL

jo

, ~C4!

D q̂5~12q!2, ~C5!

D r̂5~12r !25g2~12q!2, ~C6!

where we recall that (12r )5g(12q) and the function
@1#j(h0 ,u0) is defined in Eq.~B2!.

Next, the limit q→1 has to be taken. Using th
asymptotic expansion of@1#j(h0 ,u0) discussed in Appendix
B, we can compute the asymptotic behavior of the coe
cients Dq , D r , and Dc . After a lot of algebra, we finally
arrive at the expressions~39!-~43! with the integration re-
gions and minimal distances given by Eqs.~22!–~33!. In this
limit, it turns out that an analytical expression can be fou
for the eigenvalues. First, we notice that the determinan
the matrix remains finite in the limit. Since the determinan
the product of the eigenvalues, it follows that this produc
finite. Two possibilities arise, either all eigenvalues are fin
or two of them tend to zero and two to infinity with the sam
ratio. It is not hard to prove that the first choice is incorre
Hence, two of the eigenvalues have to behave asympotic
as (12q)6n. One can check that onlyn52 is possible. This
allows us to splitP(l) into two polynomials that give the
solutions around zero and around infinity. These polynom
read

P0~l!5@Dq~D q̂2l!21#@D r~D r̂2l!21#

2Dc
2~D q̂2l!~D r̂2l!,

~C7!

P`~l!5~Dq2l!~D r2l!2Dc
2 .

From these two polynomials, the four eigenvalues~35!–~38!
can be found. We remark that in the limita→1 we find back
the stability criteria for the original Gardner capacity pro
lem.
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